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The axisymmenical equilibrium forms of a spherical shell under the action of a uni- 

formly distributed pressure are studied. The deformation is supposed small, but no limi- 

tations are imposed on the magnitude of the displacements. The assumptions are exactly 
those taken in studying flexible rods; this provides 

the possibility of using terminological analogies. 

Fig. 1 Fig. 2 

1. For independent variable we take the angle 6 referred to the undeformed surface. 
We denote by e a positive variation in this angle. We further introduce dimensionless 

displacements u. and IU, relative to the shell’s radius R (Fig. 1). 

From geometrical considerations it follows that : 

24’ = (1 + &I) cos (cl + 6) - cos 0 
w’ = (1 + EJ sin (0 + 6) -- sin 9 ( (* . sy=d(.d; .)j 

(1.1) 

U 

” = sin 6 (1.2) 

Here el and e, are strains in the mean surface. At a distance z from the mean surface 

e l,=el-+-+~. %Z =ee++Hxz (1.3) 

Rx1 = 6’ - Ed, Rx2 = 
sin (6 + 6) 

sin 0 -I---_~ (i.4) 

In accordance with Hook0 law, 

2’1 = el + pea, MI = Rx1 + ~RH, 

.Ta = e, + pel, M, = Rx, + p.Rxl 

Here TI, Tp, MI, M, are dimensionless forces and moments 

(1.5) 

1 - p* 
TVA= T;,2 Eh , Ml,2 T- M; 2 

12R (I- p.2) 
Et9 

The transverse force Q* and pressure p reduce to the dimensionless forms 
R (I.- pL2) 

PO = P 2Eh (4.6) 

We formulate the three equilibrium equations.neglecting elongations in the mean SUP 

face: the first is for the segment of the cap (Fig.2) 

T1 sin (0 + 6) - Q cos (6 + 6) = - p. sin 6 (1.7) 
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the two others are for an element of this cap (Fig.2) 

c+Q sin B = (Mr sin 0)’ - MS co.7 (0 + 6) (1.9) 

Here X’ = 2p&n 0 sin (9 + 43) + T, (1.9) 

a=ha/i2Ra (1.10) 

X = 12’1 cos (0 + 6) + Q sin (0 + 6)] sin 8 (1.11) 
Equation (1.9) results from equating to zero the sum of all projections of forces onto 

the r-axis (Fig. 2), perpendicular to the axis of symmetry. 
We group the equations obtained into a system suitable for numerical integration 

u’ = (1 + Er) cos(6 + 6) - CO&, 6’= RQ - El x’ = 2p~sin0cos(e -i- S) _t F2, 

(rosined = u-l @sin9 + ~~cos(0 + +) ~3‘ = (1 + al)sin@ + 8) - sin0 (2.12) 

The right sides may be computed at each step from Eqs. (1. I)-(& 4),(1.7) and (1.11). 
The independent variable 0 varies from zero to rt. At the ends of the interval (at the 

poles of the spheres) the functions 4 and u should vanish. 

The last of Eqs. (1.12) is integrated independently of the preceding four, and the func- 
tion w is determined with accuracy up to an arbitrary constant. The following procedure 
was used to integrate the system (1.11). 

2, The system (1.12) has two particular solutions: the first corresponding to a moment- 

less (membrane) state f+ = 0, X =L _ Po sin 0 cos 0, U = - - 
I$11 

sin 8, Ml=p, 

and the second corresponding to a sphere “turned inside out” 

PO 6=-29, X=~~sin0cos0, n=:-----sine 
1$-P ’ 

Ml=-2(1 +p)--Po 

We consider equilibrium forms for which at particular portions of the sphere a lineari- 

zation of the equations near the first or the second of these particular solutions is admisv 

sible. On these portions a numerical integration method may be used. 
The remaining interval, if it does not turn out to be too large, may be covered by the 

method of initial parameters. 
We are not able -to include all possible equilibrium forms by this procedure; to properly 

position the sequence of portions spoken of, it is necessary to have some general idea of 

the shape desired. 
We shall effect a linearization near the first particular solution. We set 

@=A@. X =--~sinf3eos%+AX 

PO u=--sin@+Au, 
i+n 

M1=fi+AMz (2.l) 

After linearizing all equations we obtain a single fourth order equation for A6 

A.6”‘) + Ati” 2ctg 0 + A6” $ - 
2 + COSTS\ 

sinz B ) + 

+ A6’ [+ (3 + 2sin2 6) + + (ctg e - sin 20)] + 

+A+{!=$_ 3 --_tctgae+2(3+p)Cos2e - i sin4 0 -2p]}=O 

(2.2) 

and also 
AXu-’ = 86” -+- Ah6’ 0t.g 8 - A6 (ctg2B + j.~ - p&) (2.3) 

Here, besides the terms neglected because of the linearization, terms in these last equa- 
tions of order 0’ are neglected, in comparison with those of order unity. 

Near the second particular solution we obtain analogously 
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8=-26+A6, X=pOsinOcosO+AX 

PO u=-sinfi+Au, 
i+IL 

M~=--(I+P)-Po+AM~ 

A#‘” + A*‘” 2ctg 6 + A+” 
( 

2 + 2y - 
2+cos2e 

sin2 6 - $) + 

+ A6’ [3 $ + 2 (2 + p) ctg 9 + %(sin 26 - ctge)] + 

+AS{+%z 
s1n4e ---2l+y)we+ 

+~[ctg~e--1-2~+2(3+~)cosV+-u 

(2.4) 

(2.5) 

- AXa- = 88” + A6’ ctg 0 - A6 (ct@ 6 - 2 - p + PO/~) (2.6) 

3. We envisage some typical equilibrium form, such as shown in Fig. 3. 

In the interval (0, 6,) Eqs. (2.4)-(2.6) are applicable. whereas Eqs.(2.1)-(2.3) apply 
in the interval (e,,, n) . The portion from 6 = 6, to 6 = BrI will be covered by the 

method of initial parameters. 
The size of the intervals changes, depending on the 

loading parameter PO. In particualar 6r may turn out 
to be zero, or 6,,= fit. Then instead qf three portions we 
have only two ; it is important that the interval (6,, 6,,) 
not be too large. 

Equation (2.5) is integrated under the following bound- 

ary conditions: ~6 =O, AX = 0 for e = 0; 

A8 = ALIT,, A#’ = At?; for 6 = 6, 
where Ati, and A+~rt are certain parameters subject to 

later specification. 

Fig. 3 
As a result of the numerical procedure on the right 

end of the segment we find the values of the second and 

third derivatives of the function Afr.They depend on Ati1 and At&’ linearly. Therefore 

A6,” = KlA6, + KzA6,‘. Ati,“’ = KsA6, + K,A6,’ (3.4) 

where ~~ are influence coefficients. They are easily determined after twice solving Eq. 

(2.5). First we set 86, = 1 and A8i = o; so that A+” = Ki and A!,‘” =Ka.In the 
second integration 66, = 0 and A-+’ = i ; then A6;’ =K, and At?:= K,. 

For the interval (Brr,, JC) , Eq. (2.2) is used. 
For 6 = rc the function A6 = 0 and AX =. 0. For 6 = 6,, we have, analogously to 

the first portion* A$,” = K,A6,, + K,A$, , A$; = K,Af+ r + K,A$ r (3.2) 

The influence coefficients are determined in the same manner. 
We may now pass to integrating (1.12) on the portion ,(6,, 6rr). For this we give the 

values of AIY~ and Ao~I’ and from (3.1) determine n@r and Ai4, . Then with the 
aid of expressions (1. l)-(1. 11) one calculates the values of the functions U, 6, x and 
MI srn 6 at 6 = Rr. These data are used in a standard Runge-Kutta integration proce- 
dure. The integration is carried out up to 6 = 6rr and at the end of the interval we 
obtain the values of tik, tik’, Xk and Xk’which are needed for patching with the third 

part. 
At 6 =F err we have 
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6, = Mf[% X~=-PosinefIc~~eir+AX,I 

6,’ = A@,,, xk~===-fic0a2e,,+AX’,t 

These conditions guarantee the continuity of all functions at the points where the 

regions are patched together. 

Using Expressions (2.3) and (3.2) and relpacing AW,, and AtI,, by @)kandWk, we 

arrive at tWo equations X, + p0 Sl&, I COS or I _ &, _ be,< __ 0 

, 

where 
XJc + PO c0s 26, * -c~k-&y=o (3.3) 

a=s~&-etg%rI+$--p), ~=~~i~~~~~g6,~*+2~~) (3.4) 

b = a (& f ctg eIr), d--a X8+IiroCtgB*r- 
( 

i + ~052 e,, 
sinzBit -f-+-P 

> 

These quantities are calculated by means of the influence coefficients found earlier. 
The problem now consists in the choice of initial parameters At!+ and ho,‘, for which 

Eqs. (3.3) will be satisfied. This is accomplished in the usual manner, involving linear 

interpolation with two parameters. 
After the quantities A-S, and 019,’ are found, a smoothing on two portions is carried 

out, followed by a final Runge-Kutta integration. As a result we obtain a table of values 

of 6 in the interval (0, n),and hence the functions u and ti, by which the shape of the 

meridian arcs may be constructed. 

4, A few words on the parameters in the numerical realization of the described algo- 

rithm, 
The interval of integration (0, n) was divided into 255 pieces. Thus the functional 

values at 256 points were considered. The increment size n/255 was kept fixed in all 

three portions. 
A central finite difference scheme was used and two extra points were introduced at 

each end of the intervals of numerical integration. 

The positions of the boundaries, 0, and Curt, were chosen by the computer according 

to the condition 1 A.Sl < 0,06. 
m regions with small angle O (in the shallow parts of the sphere) the admissibility of 

linearization is determined not only by the magnitude of the rotation angle A@, but also 
by the magnitude of the angle 0 ; hence for the regions adjacent to the poles one impo- 

ses an additional condition 1 A@ 1 
-z&y-- < 0.06 2 ;zA:$ < 0.06 

As for the choice of initial parameters A#, and A@r’ , the necessary accuracy was 
considered attained, if in two successive linear interpolations, the changes in At$ and 

A$’ in absolute value were simultaneously less than 0.0001. 
After this, by way of various tests, the solution was found for a certain initial value of 

FO, and the computer carried out a search for new A@, and At+’ admitting variable values 

of po -+-Ape and for fixed 6r and ert. Then these latter were determined in accordance 
with the condition indicated, and the solution again constructed. The quantity L\po was 
adjusted by hand depending on the circumstances, since it was very difficult to specify 

beforehand the principles in the choice of the increments APO. 
If the domain of the desired parameters A&r and 66; is known sufficiently accurately. 

then the computer time involved in determining the eq~librium form will be very mo* 
derate, But in a transition through the extremal points pomax or ~0”~‘~ the computer 
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naturally lost the basic values of the parameters and required a fairly long time to set 

up the computation process anew. This was done with the aid of auxiliary programs. 

Fig. 4 
The left part of the “load-displace- 

ment” diagram is a straight line 
passing through the origin. The de- 
formation in this region is condi- 

tioned only by the contraction of 
the shell as a whole, and the displace- 

ment is very small. Within the accu- 
racy limits of the diagram, this 
straight line lies on the ordinate axis. 

The graph indicates the bifurcation 

point B. From it the curve sharply 

drops down and o. has two minima at 

wt,lR = 1.32 (a0 = 0.0380) 
WQ/R = 1.80 (UQ = - 0.9234) 

and a maximum at 

Fig_\\p :,lR = 1.61 (y, = 0.0425) 

The shapes of the meridran arcs on the 

deformed shell are also shown in Fig.4. As in 
the Euler elastic properties, no limitations are imposed 

as regards self-intersections of the surface. Fig. 5 shows 

the equilibrium shapes in a coarser scale. All calculations were carried out with h/&=0.01. 
Equilibrium forms asymmetrical with respect to the equatorial plane were also con- 

sidered; they were obtained by integrating the equations throughout the interval (0, n). 

The load-displacement diagram is shown in Fig&. Here the quantity wdR represents the mu- 
tual displacement of the poles. The loading has one minimum at t&/H= 1.3 (a,,= 0.0381). 

The construction of the right part of the diagram for w, I R >3 encountered great dif- 
ficulty. The zone 0,,, n (Fig. 3) is rapidly reduced, and the nonlinearizable portion 

5. First were considered equilib- 

rium forms symmetric with respect 
to the equatorial plane. It was sup- 

posed that two depressions formed 

simultaneously at opposite poles of 

the sphere, and then moved toward 
each other. The computations were 
taken only for one of the hemispheres. 

For 6 = lJ,n , x = 0 and 8 = 0. 

The results of the computation 
are given in Fig.4. The abscissa 
measures the dimensionless displace- 

ment of the pole wo / R, relative to 

the equatorial plane ; and the ordi- 
nate is the loading parameter 

P Ra -- 
GO= E z/,2 
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( I+, 6,r) (Fig. 3) increases to such an extent that the method of initial parameters is 
inapplicable. 

The equilibrium forms of the shell for various values of u,, are shown in Fig. 7. The 

lower pole of the sphere is taken as fixed. 
Comparing the diagrams shown in Figs. 4 and 6. it is seen that for hwO / R < 1 they co- 

incide; the deformations of the upper and lower hemispheres practically 

do not influence one another. 

If we turn to the solution [l] obtained earlier on the basis of the non- 
linear equations of shallow shell theory, then we discover there also a 

coincidence of the corresponding curves, but only up to the value.w, ! R= 

= 0.1 (see the dotted curve in Fig. 4). The value unm’*-= 0.06 found ear- 

lier does not agree with the new value 

o’I1 nlin = 0.038. This is a natural consd- 
quence of the error contained in the shal- 

low shell equations. 
It is interesting to consider the results 

of the numerical solution near the point 

of bifurcation. 
Fig. 8 shows, in a different scale, the left 

potion of the diagram CQ, = f (w,, / R) 

(Figs.4 and 6). 

7 dU 
The line passing through the origin char- 

Fig. 6 
acterizes the displacement of the shell 

due to uniform compression. The curve 

dropping down from the point of bifurcation 3 corresponds to bent equilibrium shapes. 
Since the indentation near the pole was small, the interval of integration was divided 

into two rather than three zones. On the part from 6 = 0 to 6 =0.5 the nonlinear 

equations (1.12) were integrated by the Runge-Kutta method, and from 6=0.5 to 6 = n 
the linearized equations (2.2) and (2.3) were solved by the method used before on the 
third portion. As is clear from Fig. 8, the curve and the straight line intersect at B at a 

certain angle. The line on the left reveals no new equilibrium forms. 
In connection with this a very interesting question arises. Near the bifurcation point, 

how are the linear and nonlinear solutions to be joined, and how valid is linearization of 
the equations near the pole? 

On the one hand. there is an analytic solution of the problem in the linear framework, 
which for a spherical shell yields a loss of stability with resulting configuration in the 

form of a Legendre function w I R = CP, (0) (with h / R = 0.01 n = 18) . The indeter- 

minate multiplier c may be either positive or negative. 
On the other hand, the numerical solution of the nonlinear equations near the bifurca- 

tion point gives only a positive value for the deflections(into the sphere). 
The answer to the question posed may apparently be given only on the basis of an ana- 

lytical investigation of the equation with small nonlinearity. A numerical solution here 
may not be effected. As an approximation, it looses accuracy at the bifurcation point 
since the scale of the function w ( R becomes vanishingly small; in fact the critical load 
itself may not be determined sufficiently accurately because of the very sharp angle 
between the straight line and the curve. Thus with the numerical procedure used, there 
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appears already at 0, = 0.62 a small (w. / R = 0.000353) but decisive expression for 
the bent equilibrium shape, near to 

the Legendre function Pr8 (6). For 
u. > 0.63 the computer consistently 
yielded, with accuracy of 0.07%. a 

displacement W” / R corresonding to 

uniform compression of the sphere. 
Thus, in distinction to the known 

linear solution, which gives a critical 
value of o. = 9.605, here we obtain 
a value of .a, lying in the interval 

(0.62,O. 63). Such a discrepancy is 
not significant. It easily may be dis- 

Fig. 7 

WO 

0 
R 

mz 0.04 aos 
Fig. 8 

missed on account of the normally admissible differences in the description of the origi- 
nal equations of stability, and on account of the obvious difficulties in the approach to 
the bifurcation point. In any case this question needs deeper study. 

The results obtained in this paper do not exhaust the possible equilibrium forms for a 
spherical shell. The number of such forms is apparently very large, and there arises a 

natural fear that upon deeper analysisof the exotic aspects of the nonuniqueness questions 
arising from the nonlinear problem, the number will grow into a cursed manifold. 

In conclusion the author feels obliged to express deep thanks to the personnel of the 
computing center for their tolerant attitude toward the restive author. Particular help 

was shown by 2. A. Kudlai and M. I. Neretin, whose services guaranteed uninterrupted 
functioning of the computers. 
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